Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2318384121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713627

RESUMEN

The reaction kinetics of photocatalytic CO2 reduction is highly dependent on the transfer rate of electrons and protons to the CO2 molecules adsorbed on catalytic centers. Studies on uncovering the proton effect in catalysts on photocatalytic activity of CO2 reduction are significant but rarely reported. In this paper, we, from the molecular level, revealed that the photocatalytic activity of CO2 reduction is closely related to the proton availability in catalysts. Specifically, four dinuclear Co(II) complexes based on Robson-type ligands with different number of carboxylic groups (-nCOOH; n = 0, 2, 4, 6) were designed and synthesized. All these complexes show photocatalytic activity for CO2 reduction to CO in a water-containing system upon visible-light illumination. Interestingly, the CO yields increase positively with the increase of the carboxylic-group number in dinuclear Co(II) complexes. The one containing -6COOH shows the best photocatalytic activity for CO2 reduction to CO, with the TON value reaching as high as 10,294. The value is 1.8, 3.4, and 7.8 times higher than those containing -4COOH, -2COOH, and -0COOH, respectively. The high TON value also makes the dinuclear Co(II) complex with -6COOH outstanding among reported homogeneous molecular catalysts for photocatalytic CO2 reduction. Control experiments and density functional theory calculation indicated that more carboxylic groups in the catalyst endow the catalyst with more proton relays, thus accelerating the proton transfer and boosting the photocatalytic CO2 reduction. This study, at a molecular level, elucidates that more carboxylic groups in catalysts are beneficial for boosting the reaction kinetics of photocatalytic CO2 reduction.

2.
Autoimmunity ; 57(1): 2332340, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38545756

RESUMEN

Interferon-beta (IFN-ß) is one of the classical drugs for immunomodulatory therapy in relapsing-remitting multiple sclerosis (RRMS) patients, but the drug responsiveness of different patients varies. Currently, there is no valid model to predict IFN-ß responsiveness. This research attempted to develop an IFN-ß responsiveness prediction model based on mRNA expression in RRMS patient peripheral blood mononuclear cells. Peripheral blood mononuclear cell mRNA expression datasets including 50 RRMS patients receiving IFN-ß treatment were obtained from GEO. Among the datasets, 24 cases from GSE24427 were included in a training set, and 18 and 9 cases from GSE19285 and GSE33464, respectively, were adopted as two independent test sets. In the training set, blood samples were collected immediately before first, second, month 1, 12, and 24 IFN-ß injection, and the mRNA expression data at four time points, namely, two days, one month, one year and two years after the onset of IFN-ß treatment, were compared with pre-treatment data to identify IFN-stimulated genes (ISGs). The ISGs at the one-month time point were used to construct the drug responsiveness prediction model. Next, the drug responsiveness model was verified in the two independent test sets to examine the performance of the model in predicting drug responsiveness. Finally, we used CIBERSORTx to estimate the content of cell subtypes in samples and evaluated whether differences in the proportions of cell subtypes were related to differences in IFN-ß responsiveness. Among the four time points, one month was the time point when the training set GSE24427 and test set GSE33464 had the highest number of ISGs. Functional analysis showed that these one-month ISGs were enriched in biological functions such as the innate immune response, type-I interferon signalling pathway, and other IFN-ß-associated functions. Based on these ISGs, we obtained a four-factor prediction model for IFN-ß responsiveness including MX1, MX2, XAF1, and LAMP3. In addition, the model demonstrated favourable predictive performance within the training set and two external test sets. A higher proportion of activated NK cells and lower naive CD4/total CD4 ratio might indicate better drug responsiveness. This research developed a polygene-based biomarker model that could predict RRMS patient IFN-ß responsiveness in the early treatment period. This model could probably help doctors screen out patients who would not benefit from IFN-ß treatment early and determine whether a current treatment plan should be continued.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , ARN Mensajero/genética , Leucocitos Mononucleares , Interferón beta/uso terapéutico , Interferón beta/genética , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/genética
3.
Sci Rep ; 14(1): 5300, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438409

RESUMEN

Arterial occlusion-induced ischemic stroke (IS) is a highly frequent stroke subtype. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that modulates antioxidant genes. Its role in IS is still unelucidated. The current study focused on constructing a transient middle cerebral artery occlusion (tMCAO) model for investigating the NRF2-related mechanism underlying cerebral ischemia/reperfusion (I/R) injury. Each male C57BL/6 mouse was injected with/with no specific NRF2 activator post-tMCAO. Changes in blood-brain barrier (BBB)-associated molecule levels were analyzed using western-blotting, PCR, immunohistochemistry, and immunofluorescence analysis. NRF2 levels within cerebral I/R model decreased at 24-h post-ischemia. NRF2 activation improved brain edema, infarct volume, and neurological deficits after MCAO/R. Similarly, sulforaphane (SFN) prevented the down-regulated tight junction proteins occludin and zonula occludens 1 (ZO-1) and reduced the up-regulated aquaporin 4 (AQP4) and matrix metalloproteinase 9 (MMP9) after tMCAO. Collectively, NRF2 exerted a critical effect on preserving BBB integrity modulating ferroptosis and inflammation. Because NRF2 is related to BBB injury regulation following cerebral I/R, this provides a potential therapeutic target and throws light on the underlying mechanism for clinically treating IS.


Asunto(s)
Ferroptosis , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Animales , Masculino , Ratones , Barrera Hematoencefálica , Infarto Cerebral , Inflamación , Isquemia , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Accidente Cerebrovascular/tratamiento farmacológico
4.
Chemistry ; 30(7): e202303345, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37964711

RESUMEN

Homonuclear dual-atomic catalysts showcase unique electronic modulation due to their dual metal centres, providing new direction in development of efficient catalysts for CO2 electroreduction. This article highlights a few cutting-edge homonuclear dual-atomic catalysts, focusing on their inherent advantages in efficient and selective CO2 electroreduction, to spotlight the potential application of dual-atomic catalysts in CO2 electroreduction.

5.
Angew Chem Int Ed Engl ; 63(10): e202318735, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38108581

RESUMEN

Covalent organic frameworks (COFs) have been widely studied in photocatalytic CO2 reduction reaction (CO2 RR). However, pristine COFs usually exhibit low catalytic efficiency owing to the fast recombination of photogenerated electrons and holes. In this study, we fabricated a stable COF-based composite (GO-COF-366-Co) by covalently anchoring COF-366-Co on the surface of graphene oxide (GO) for the photocatalytic CO2 reduction. Interestingly, in absolute acetonitrile (CH3 CN), GO-COF-366-Co shows a high selectivity of 94.4 % for the photoreduction of CO2 to formate, with a formate yield of 15.8 mmol/g, which is approximately four times higher than that using the pristine COF-366-Co. By contrast, in CH3 CN/H2 O (v : v=4 : 1), the main product for the photocatalytic CO2 reduction over GO-COF-366-Co is CO (96.1 %), with a CO yield as high as 52.2 mmol/g, which is also approximately four times higher than that using the pristine COF-366-Co. Photoelectrochemical experiments demonstrate the covalent bonding of COF-366-Co and GO to form the GO-COF-366-Co composite facilitates charge separation and transfer significantly, thereby accounting for the enhanced catalytic activity. In addition, theoretical calculations and in situ Fourier transform infrared spectroscopy reveal H2 O can stabilize the *COOH intermediate to further form a *CO intermediate via O-H(aq)⋅⋅⋅O(*COOH) hydrogen bonding, thus explaining the regulated photocatalytic performance.

6.
Adv Healthc Mater ; 12(32): e2302020, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37767984

RESUMEN

Solid tumors are characterized by enhanced metabolism of lipid, particularly cholesterol, inspiring the exploration of metabolic therapy through cholesterol oxidase (COD)-mediated cholesterol deprivation. However, the therapeutic efficacy of COD is limited due to the hypoxic tumor microenvironment and the protective autophagy triggered by cholesterol deprivation. Herein, a combination therapy for metabolically treating solid tumors through COD in conjunction with molybdenum oxide nanodots (MONDs), which serve as both potent oxygen generators and autophagy inhibitors, is reported. MONDs convert H2 O2 (arising from COD-mediated cholesterol oxidation) into O2 , which is then recycled by COD to form reciprocal feedback for cholesterol depletion. Concurrently, MONDs can overcome autophagy-induced therapeutic resistance frequently occurring in conventional nutrient deprivation therapy by activating AKT/mTOR pathway phosphorylation. Combination therapy in the xenograft model results in an ≈5-fold increase in therapeutic efficiency as compared with COD treatment alone. This functionally cooperative metabolic coupling strategy holds great promise as a novel polytherapy approach that will benefit patients with solid tumors.


Asunto(s)
Autofagia , Neoplasias , Humanos , Retroalimentación , Neoplasias/tratamiento farmacológico , Colesterol , Fosforilación , Línea Celular Tumoral , Microambiente Tumoral
7.
J Stroke Cerebrovasc Dis ; 32(8): 107235, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37393689

RESUMEN

BACKGROUND: Ischemic stroke represents a major factor causing global morbidity and death. Bone marrow mesenchymal stem cell (BMSC)-derived exosomes (Exos) have important effects on treating ischemic stroke. Here, we investigated the therapeutic mechanism by which BMSC-derived exosomal miR-193b-5p affects ischemic stroke. METHODS: luciferase assay was performed to evaluate the regulatory relationship of miR-193b-5p with absent in melanoma 2 (AIM2). Additionally, an oxygen-glucose deprivation/reperfusion (OGD/R) model was constructed for the in vitro assay, while a middle cerebral artery occlusion (MCAO) model was developed for the in vivo assay. After exosome therapy, lactate dehydrogenase and MTT assays were conducted to detect cytotoxicity and cell viability, while PCR, ELISA, western blotting assay, and immunofluorescence staining were performed to detect changes in the levels of pyroptosis-related molecules. TTC staining and TUNEL assays were performed to assess cerebral ischemia/reperfusion (I/R) injury. RESULTS: In the luciferase assay, miR-193b-5p showed direct binding to the 3'-untranslated region of AIM2. In both in vivo and in vitro assays, the injected exosomes could access the sites of ischemic injury and could be internalized. In the in vitro assay, compared to normal BMSC-Exos, miR-193b-5p-overexpressing BMSC-Exos showed greater effects on increasing cell viability and attenuating cytotoxicity; AIM2, GSDMD-N, and cleaved caspase-1 levels; and IL-1ß/IL-18 generation. In the in vivo assay, compared to normal BMSC-Exos, miR-193b-5p-overexpressing BMSC-Exos showed greater effects on decreasing the levels of these pyroptosis-related molecules and infarct volume. CONCLUSION: BMSC-Exos attenuate the cerebral I/R injury in vivo and in vitro by inhibiting AIM2 pathway-mediated pyroptosis through miR-193b-5p delivery.


Asunto(s)
Accidente Cerebrovascular Isquémico , Melanoma , Células Madre Mesenquimatosas , MicroARNs , Humanos , Piroptosis , MicroARNs/genética , MicroARNs/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas de Unión al ADN/metabolismo
8.
Medicina (Kaunas) ; 59(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37512077

RESUMEN

Respiratory muscle paralysis is known as a very common complication of Guillain-Barré syndrome (GBS). However, most research has focused on its later stages rather than its earlier stages, including the prognosis of patients with this condition, or factors that act as early predictors of risk. Therefore, our study aimed to identify early predictors of respiratory muscle paralysis in patients with GBS and determine the short-term prognosis of such patients. We recruited 455 GBS patients (age ≥ 18) who had been hospitalized in the First Affiliated Hospital of Harbin Medical University between 2016 and 2021, retrospectively. We recorded clinical and laboratory data and used linear and logistic regression analysis to investigate the relationship between early clinical, examination results, and subsequent respiratory muscle paralysis. Among the 455 patients, 129 were assigned to a respiratory muscle paralysis group and 326 were assigned to a non-respiratory muscle paralysis group. Compared with the non-affected group, the time from onset to admission was shorter (p = 0.0003), and the Medical Research Council (MRC) score at admission and discharge was smaller in the affected group (p < 0.0001). Compared with the non-affected group, the affected group had higher Hughes and Erasmus GBS Respiratory Insufficiency Score (EGRIS) scores at admission and longer hospital stays (p < 0.0001). Patients in the affected group were more likely to have bulbar palsy and lung infections (p < 0.0001). To conclude, bulbar palsy, a higher EGRIS score and Hughes score at admission, a lower MRC score, and a shorter time between onset and admission, are all predictive risk factors for respiratory muscle paralysis in patients with GBS. An increase in any of these factors increases the risk of muscle paralysis. Patients with respiratory muscle paralysis have a poorer short-term prognosis than those without respiratory muscle paralysis. Therefore, we should attempt to identify patients with one or more of these characteristics in the early stages of admission, provide ventilation management, and administer IMV treatment if necessary.


Asunto(s)
Parálisis Bulbar Progresiva , Síndrome de Guillain-Barré , Parálisis Respiratoria , Humanos , Adulto , Síndrome de Guillain-Barré/complicaciones , Estudios Retrospectivos , Parálisis Bulbar Progresiva/complicaciones , Parálisis Respiratoria/etiología , Pronóstico , Músculos
9.
Inorg Chem ; 62(29): 11611-11617, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37428154

RESUMEN

The development of hierarchically porous metal-organic frameworks (MOFs) with high stability is desirable to expand their applications but remains challenging. Herein, an anionic sodalite-type microporous MOF (Yb-TTCA; TTCA3- = triphenylene-2,6,10-tricarboxylate) was synthesized, which shows outstanding catalytic activities for the cycloaddition of CO2 into cyclic carbonates. Moreover, the microporous Yb-TTCA can be transformed into a hierarchical micro- and mesoporous Yb-TTCA by water treatment with the mesopore sizes of 2 to 12 nm. The hierarchically porous Yb-TTCA (HP-Yb-TTCA) not only exhibits a high thermal stability up to 500 °C but also shows a high chemical stability in aqueous solutions with pH values ranging from 2 to 12. In addition, the HP-Yb-TTCA displays enhanced performance for the removal of organic dyes in comparison with microporous Yb-TTCA. This work provides a facile way to construct hierarchically porous MOF materials.

10.
Chem Soc Rev ; 52(9): 3170-3214, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37070676

RESUMEN

Catalysts featuring dinuclear metal sites are regarded as superior systems compared with their counterparts with mononuclear metal sites. The dinuclear metal sites in catalysts with appropriate spatial separations and geometric configurations can confer the dinuclear metal synergistic catalysis (DMSC) effect, and thus boost the catalytic performance, in particular for reactions involving multiple reactants, intermediates and products. In this review, we summarize the related reports on the design and synthesis of both homogeneous and heterogeneous dinuclear metal catalysts, and their applications in energy conversion reactions, including photo-/electro-catalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), CO2 reduction reaction (CO2RR), and N2 reduction reaction (N2RR). Particularly, we focus on the analysis of the relationship between the catalyst structure and catalytic performances, where the design principles are presented. Finally, we discuss the challenges in the design and preparation of dinuclear metal catalysts with the DMSC effect and present a perspective on the future development of dinuclear metal catalysts in energy conversion. This review aims to comprehensively summarize the up-to-date research progress on the synthesis and energy-related application of dinuclear metal catalysts and provide guidance for designing energy-conversion catalysts with superior performances.

11.
Sci Rep ; 13(1): 5862, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041166

RESUMEN

Guillain-Barré syndrome (GBS) is an autoimmune disorder wherein the composition and gene expression patterns of peripheral blood immune cells change significantly. It is triggered by antigens with similar epitopes to Schwann cells that stimulate a maladaptive immune response against peripheral nerves. However, an atlas for peripheral blood immune cells in patients with GBS has not yet been constructed. This is a monocentric, prospective study. We collected 5 acute inflammatory demyelinating polyneuropathy (AIDP) patients and 3 healthy controls hospitalized in the First Affiliated Hospital of Harbin Medical University from December 2020 to May 2021, 3 AIDP patients were in the peak stage and 2 were in the convalescent stage. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from these patients. Furthermore, we performed cell clustering, cell annotation, cell-cell communication, differentially expressed genes (DEGs) identification and pseudotime trajectory analysis. Our study identified a novel clonally expanded CD14+ CD163+ monocyte subtype in the peripheral blood of patients with AIDP, and it was enriched in cellular response to IL1 and chemokine signaling pathways. Furthermore, we observed increased IL1ß-IL1R2 cell-cell communication between CD14+ and CD16+ monocytes. In short, by analyzing the single-cell landscape of the PBMCs in patients with AIDP we hope to widen our understanding of the composition of peripheral immune cells in patients with GBS and provide a theoretical basis for future studies.


Asunto(s)
Síndrome de Guillain-Barré , Humanos , Leucocitos Mononucleares , Monocitos , Estudios Prospectivos , Receptores Tipo II de Interleucina-1 , Análisis de la Célula Individual
12.
Front Cell Dev Biol ; 11: 1141331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936694

RESUMEN

The annexin A (ANXA) protein family is a well-known tissue-specific multigene family that encodes Ca2+ phospholipid-binding proteins. A considerable amount of literature is available on the abnormal expression of ANXA proteins in various malignant diseases, including cancer, atherosclerosis and diabetes. As critical regulatory molecules in cancer, ANXA proteins play an essential role in cancer progression, proliferation, invasion and metastasis. Recent studies about their structure, biological properties and functions in different types of cancers are briefly summarised in this review. We further discuss the use of ANXA as new class of targets in the clinical diagnosis and treatment of cancer.

13.
Angew Chem Int Ed Engl ; 62(20): e202300507, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36897282

RESUMEN

The mismatched fast-electron-slow-proton process in the electrocatalytic oxygen evolution reaction (OER) severely restricts the catalytic efficiency. To overcome these issues, accelerating the proton transfer and elucidating the kinetic mechanism are highly sought after. Herein, inspired by photosystem II, we develop a family of OER electrocatalysts with FeO6 /NiO6 units and carboxylate anions (TA2- ) in the first and second coordination sphere, respectively. Benefiting from the synergistic effect of the metal units and TA2- , the optimized catalyst delivers superior activity with a low overpotential of 270 mV at 200 mA cm-2 and excellent cycling stability over 300 h. A proton-transfer-promotion mechanism is proposed by in situ Raman, catalytic tests, and theoretical calculations. The TA2- (proton acceptor) can mediate proton transfer pathways by preferentially accepting protons, which optimizes the O-H adsorption/activation process and reduces the kinetic barrier for O-O bond formation.

14.
Nanomaterials (Basel) ; 13(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770398

RESUMEN

Small molecular dyes are commonly used for bacterial imaging, but they still meet a bottleneck of biological toxicity and fluorescence photobleaching. Carbon dots have shown high potential for bio-imaging due to their low cost and negligible toxicity and anti-photobleaching. However, there is still large space to enhance the quantum yield of the carbon quantum dots and to clarify their mechanisms of bacterial imaging. Using carbon dots for dyeing alive bacteria is difficult because of the thick density and complicated structure of bacterial cell walls. In this work, both dead or alive bacterial cell imaging can be achieved using the primary amine functionalized carbon dots based on their small size, excellent quantum yield and primary amine functional groups. Four types of carbon quantum dots were prepared and estimated for the bacterial imaging. It was found that the spermine as one of precursors can obviously enhance the quantum yield of carbon dots, which showed a high quantum yield of 66.46% and high fluorescence bleaching-resistance (70% can be maintained upon 3-h-irradiation). Furthermore, a mild modifying method was employed to bound ethylenediamine on the surface of the spermine-carbon dots, which is favorable for staining not only the dead bacterial cells but also the alive ones. Investigations of physical structure and chemical groups indicated the existence of primary amine groups on the surface of spermine-carbon quantum dots (which own a much higher quantum yield) which can stain alive bacterial cells visibly. The imaging mechanism was studied in detail, which provides a preliminary reference for exploring efficient and environment-friendly carbon dots for bacterial imaging.

15.
Proteomics Clin Appl ; 17(1): e2200036, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36316278

RESUMEN

Although several effective treatment modalities have been developed for cancers, the morbidity and mortality associated with cancer continues to increase every year. As one of the most exciting emerging technologies, protein microarrays represent a powerful tool in the field of cancer research because of their advantages such as high throughput, small sample usage, more flexibility, high sensitivity and direct readout of results. In this review, we focus on the research progress in four types of protein microarrays (proteome microarray, antibody microarray, lectin microarray and reversed protein array) with emphasis on their application in cancer research. Finally, we discuss the current challenges faced by protein microarrays and directions for future developments. We firmly believe that this novel systems biology research tool holds immense potential in cancer research and will become an irreplaceable tool in this field.


Asunto(s)
Neoplasias , Análisis por Matrices de Proteínas , Análisis por Matrices de Proteínas/métodos , Análisis por Micromatrices/métodos , Proteoma , Lectinas
16.
Angew Chem Int Ed Engl ; 61(51): e202215187, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36316808

RESUMEN

Dual-atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2 -N7 , Ni2 -N5 C2 and Ni2 -N3 C4 ) by the regulation of the coordination environments around the dual-atom Ni2 centres. As a result, Ni2 -N3 C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single-atom Ni catalyst (Ni-N2 C2 ), but also higher than Ni2 -N7 and Ni2 -N5 C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2 -N3 C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates.

17.
Brain Sci ; 12(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36291343

RESUMEN

Female-specific risk factors for stroke have gradually received attention. The relationship between ischemic stroke and adenomyosis, a benign uterine disorder commonly present in parous women, is underrecognized. We aimed to provide an overview of the epidemiology, pathophysiological mechanisms, clinical characteristics, diagnostic considerations, and potential therapeutic strategies of adenomyosis-associated ischemic stroke. We shared our experience with the diagnosis and management of a patient, and summarized current findings and knowledge gaps of this disease based on previous literature. The relevant studies were searched in English and Chinese databases up to April 2022 using the keywords "ischemic stroke", "cerebral infarction" and "adenomyosis". Then, we provided a narrative review of the retrieved articles. Finally, the data of 32 cases were analyzed. We found that increased levels of carbohydrate antigen 125 and D-dimer and decreased level of hemoglobin are biomarkers of adenomyosis-associated ischemic stroke. In addition, hypercoagulability might be a key mechanism leading to thromboembolism in the cerebrovascular system. Additional studies are needed to find optimal prevention strategies for the disease. A better understanding of this "rare" pathogenesis of ischemic stroke may inform a more precise diagnosis and effective prevention strategy in middle-aged women with embolic stroke of undetermined source.

18.
Proc Natl Acad Sci U S A ; 119(35): e2119267119, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35998222

RESUMEN

A carbazolide-bis(NHC) NiII catalyst (1; NHC, N-heterocyclic carbene) for selective CO2 photoreduction was designed herein by a one-stone-two-birds strategy. The extended π-conjugation and the strong σ/π electron-donation characteristics (two birds) of the carbazolide fragment (one stone) lead to significantly enhanced activity for photoreduction of CO2 to CO. The turnover number (TON) and turnover frequency (TOF) of 1 were ninefold and eightfold higher than those of the reported pyridinol-bis(NHC) NiII complex at the same catalyst concentration using an identical Ir photosensitizer, respectively, with a selectivity of ∼100%. More importantly, an organic dye was applied to displace the Ir photosensitizer to develop a noble-metal-free photocatalytic system, which maintained excellent performance and obtained an outstanding quantum yield of 11.2%. Detailed investigations combining experimental and computational studies revealed the catalytic mechanism, which highlights the potential of the one-stone-two-birds effect.

19.
Front Pharmacol ; 13: 834948, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685645

RESUMEN

Background: Ischemic stroke is the most common stroke incident. Sphingosine-1-phosphate (S1P) receptor 3 (S1PR3) is a member of the downstream G protein-coupled receptor family of S1P. The effect of S1PR3 on ischemic stroke remains elusive. Methods: We downloaded two middle cerebral artery occlusion (MCAO) microarray datasets from the Gene Expression Omnibus (GEO) database and screened differentially expressed genes (DEGs). Then, we performed a weighted gene coexpression network analysis (WGCNA) and identified the core module genes related to ischemic stroke. We constructed a protein-protein interaction (PPI) network for the core genes in which DEGs and WGCNA intersected. Finally, we discovered that S1PR3 was involved as the main member of the red proteome. Then, we explored the mechanism of S1PR3 in the mouse tMCAO model. The S1PR3-specific inhibitor CAY10444 was injected into the abdominal cavity of mice after cerebral ischemia/reperfusion (I/R) injury, and changes in the expression of blood-brain barrier-related molecules were measured using PCR, western blotting, and immunofluorescence staining. Results: Both GEO datasets showed that S1PR3 was upregulated during cerebral I/R in mice. WGCNA revealed that the light yellow module had the strongest correlation with the occurrence of IS. We determined the overlap with DEGs, identified 146 core genes that are potentially related to IS, and constructed a PPI network. Finally, S1PR3 was found to be the main member of the red proteome. In the mouse cerebral I/R model, S1PR3 expression increased 24 h after ischemia. After the administration of CAY10444, brain edema and neurological deficits in mice were ameliorated. CAY10444 rescued the decreased expression of the tight junction (TJ) proteins zonula occludens 1 (ZO1) and occludin after ischemia induced by transient MCAO (tMCAO) and reduced the increase in aquaporin 4 (AQP4) levels after tMCAO, preserving the integrity of the BBB. Finally, we found that S1PR3 is involved in regulating the mitogen-activated protein kinase (MAPK) and (phosphatidylinositol-3 kinase/serine-threonine kinase) PI3K-Akt signaling pathways. Conclusion: S1PR3 participates in the regulation of blood-brain barrier damage after cerebral I/R. S1PR3 is expected to be an indicator and predictor of cerebral ischemia, and drugs targeting S1PR3 may also provide new ideas for clinical medications.

20.
Small ; 18(20): e2200332, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35451165

RESUMEN

2D lamellar materials can offer high surface area and abundant reactive sites, thus showing an appealing prospect in photocatalytic hydrogen evolution. However, it is still difficult to build cost-efficient photocatalytic hydrogen evolution systems based on 2D materials. Herein, an in situ growth method is employed to build 2D/2D heterojunctions, with which 2D Ni-based metal-organic layers (Ni-MOLs) are closely grown on 2D porous CdS (P-CdS) nanosheets, affording traditional P-CdS/Ni-MOL heterojunction materials. Impressively, the optimized P-CdS/Ni-MOL catalyst exhibits superior photocatalytic hydrogen evolution performance, with an H2 yield of 29.81 mmol g-1 h-1 . This value is 7 and 2981 times higher than that of P-CdS and Ni-MOLs, respectively, and comparable to those of reported state of the art catalysts. Photocatalytic mechanism studies reveal that the enhanced photocatalytic performance can be attributed to the 2D/2D intimate interface between P-CdS and Ni-MOLs, which facilitates the fast charge carriers' separation and transfer. This work provides a strategy to develop 2D MOL-based photocatalysts for sustainable energy conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...